Sahline

A.S:2008/2009 Devoir de Contrôle N°1

Classes 2sc₁

Durée: 60 mn

Exercice N°1:(3 pts)

Répondre par : « vrai » ou « faux »

L'écriture scientifique de $0,0036$ est $3,60\times10^{-3}$	
L'ordre de grandeur de 360 est 4×10^2	
La valeur approchée de -23,456 à 10^{-2} près par excès est -23,45	
$ x-3\sqrt{5} = 3\sqrt{5} - 5\sqrt{3}$ éq à $x = 6\sqrt{5}$ ou $x = -4\sqrt{3}$	
si $a \ge 1$ alors $\sqrt{a} \le a \le a^2$	
$t^2 - 8t + 15 = (t - 3)(t - 5)$	

Exercice N°2:(6 pts)

Soient les réels : $x = \sqrt{9 - 4\sqrt{5}}$ et $y = \sqrt{9 + 4\sqrt{5}}$

1/Montrer que : x.y = 1

2/ On pose: a = x + y et b = x - y

a) Calculer a² et b² ; puis déduire les valeurs de a et b

b) Déduire une expression simple de x et y

Exercice N°3:(7 pts)

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j})

On donne les points A(2,1); B(3,2) et C(0,3)

1/a) Donner les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

b) Montrer que ABC est un triangle rectangle en A

2/ Déterminer les coordonnées du point D vérifiant : $2\overrightarrow{AD} = 3\overrightarrow{AB} - \overrightarrow{AC}$

3/a) Montrer que le repère $(A, \overline{AB}, \overline{AC})$ n'est pas orthonormé

b) Déterminer les coordonnées du point D dans le repère $(A, \overline{AB}, \overline{AC})$

Exercice N°4:(4 pts)

Soit ABC un triangle, I le milieu de [AB] et J le milieu de [AC]

1/ Montrer que pour tout point M du plan on a : $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$

2/ Déterminer l'ensemble des points M du plan dans chacun des cas suivants :

a) $\|\overrightarrow{MA} + \overrightarrow{MB}\| = \|\overrightarrow{MA} + \overrightarrow{MC}\|$

b) $\|\overrightarrow{MA} + \overrightarrow{MB}\| = 2$

